2DEALAS
Projektlaufzeit: -
Thema Basistechnologien für Quantentechnologien
Fördermaßnahme Wissenschaftliche Vorprojekte (WiVoPro)
Projektlaufzeit 01.03.2024 - 28.02.2027
Projektvolumen 598920
Förderquote zu 100,0 % durch das BMFTR gefördert
Einzelne Erbium‐Atome in einer photonischen Nanostruktur werden genutzt, um verschränkte Zustände vieler Photonen zu erzeugen, die mit konventioneller Glasfasertechnik kompatibel sind.
Verschränkte Photonen haben in der Quantentechnologie eine herausragende Stellung, weil sie es erlauben, Quanteninformation über große Distanzen in Glasfasern zu übertragen. Darüber hinaus lassen sie sich mit photonischen Silizium‐Chips kontrollieren und verarbeiten, was schnelle Quantencomputer auf Basis etablierter Halbleiter‐Fertigungsprozesse ermöglicht. Trotz jahrzehntelanger Forschungstätigkeit ist es jedoch bisher nicht gelungen, eine Quelle verschränkter Photonen zu realisieren, die den hohen Anforderungen an die Effizienz und Kohärenz genügt, und die sich gleichzeitig in einem skalierbaren Verfahren herstellen lässt.
Im Projekt MESSIC sollen die genannten Hindernisse überwunden werden. Zu diesem Zweck werden einzelne Erbium‐Dotieratome in einen nanophotonischen Silizium‐Resonator integriert. Mit optimierter Auskopplung wird eine Effizienz >50% angestrebt. Durch Spinselektive Anregung sollen dann mehrere Photonen erzeugt werden, die mit dem Spin der Erbium‐Dotieratome verschränkt sind.
Erstens ermöglicht Silizium als Wirtskristall aufgrund der Reinheit kommerziell verfügbarer Wafer außergewöhnlich hohe Kohärenzzeiten. Zweitens lässt sich eine Photonenquelle auf Basiskommerzieller Silizium‐Technologie realisieren. Dies erschließt ein einmaliges Potential zur Realisierung skalierbarer Quantentechnologien. Drittens lassen sich dabei mehrere Dotieratome im selben Resonator integrieren und durch spektrales Multiplexing individuell adressieren. Dies könnte die Realisierung mehrdimensionaler Cluster‐Zustände ermöglichen und damit die Voraussetzungen schaffen für die Implementierung größerer photonischer Quantencomputer, für Quantensensoren mit erhöhter Präzision und für effiziente fehlerkorrigierte Quantennetzwerke.
Prof. Dr. Andreas Reiserer
E-Mail: andreas.reiserer@tum.de
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -
Projektlaufzeit: -